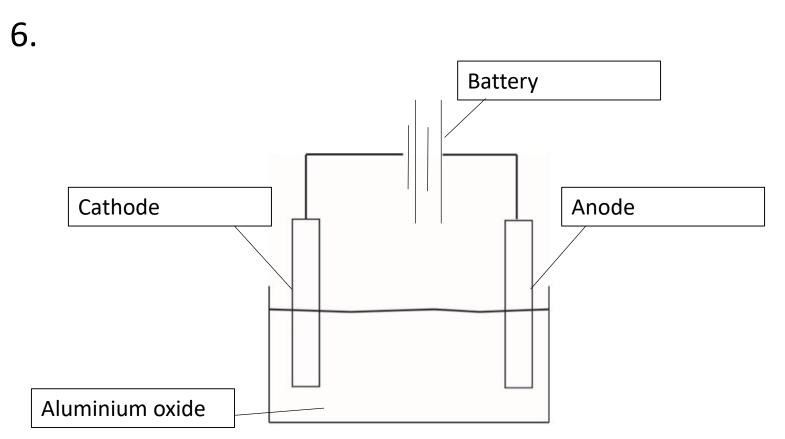
Knowledge

×/

- 1. H⁺ ions
- 2. An acid where the compound fully dissociates in solution
- 3. The tendency of the metal to lose electrons and form ions
- 4. $H^+ + OH^- \rightarrow H_2O$
- 5. It increases by a factor of 10
- 6. Reduction is the gain of electrons or loss of electrons
- 7. Oxidation and reduction both occur
- 8. Splitting a compound using electricity

9. They are too reactive to be extracted using reduction with carbon

- 10. H⁺ and OH⁻ ions
- 11. Cathode and anode
- 12. Loss of electrons or the gain of oxygen


Application

- 1. $2Fe_2O_3 + 3C \rightarrow 3CO_2 + 4Fe$ carbon is oxidised, iron oxide is reduced
- 2. Sodium chloride can only be electrolysed when molten and it has a very high melting point because of the strong bonds in the giant ionic lattice.

3.	Gas	How to do the test	Positive result
		Hold a lit splint	Squeaky pop
	Hydrogen	over the tube	
		Put a glowing splint	The splint will
	Oxygen	into the gas	relight
		Put damp litmus	The litmus paper
	Chlorine	paper into the gas	will be bleached of
			its colour

4. Potassium, sodium, lithium, calcium, magnesium, iron

5. Hydrogen is given off at the cathode as it is less reactive than sodium

7. To lower the melting point

8. When the aluminium oxide is molten, aluminium ions are attracted to the cathode, where they gain 3 electrons to form Aluminium atoms. Oxide ions are attracted to the anode where they lose 2 electrons to form oxygen.

$$A|^{3+} + 3e^{-} \rightarrow A|$$
$$2O^{2-} - 4e^{-} \rightarrow O_{2}$$

9. Cathode

$$Cu^{2+} + 2e^{-} \rightarrow Cu$$

4OH⁻ - 4e⁻ → O₂ + 2H₂O